Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The non-Hermitian skin effect (NHSE) is a well-known phenomenon in open topological systems that causes a large number of eigenstates to become localized at the boundary. Although many aspects of its theory have been investigated in linear systems, this phenomenon remains novel in nonlinear models. In the first step of this paper, we look at the conditions for the presence of quasi-skin modes in a semi-infinite, one-dimensional, nonlinear, nonreciprocal lattice. In the following phase, we explore the survival time of the quasi-skin mode in a finite nonlinear lattice with open edges. We study the dependency of the survival time on the system’s parameters and demonstrate how the nonreciprocity of the system affects the survival time. This study introduces a method for achieving a stable localized state in a nonlinear finite lattice.more » « lessFree, publicly-accessible full text available November 22, 2025
-
In this paper, we present a unifying analytical framework for identifying conditions for transport effects such as reflectionless and transparent transport, lasing, and coherent perfect absorption in non-Hermitian nonreciprocal systems using a generalized transfer matrix method. This provides a universal approach to studying the transport of tight-binding platforms, including higher-dimensional models and those with an internal degree of freedom going beyond the previously studied case of one-dimensional chains with nearest-neighbor couplings. For a specific class of tight-binding models, the relevant transport conditions and their signatures of non-Hermitian, nonreciprocal, and topological behavior are analytically tractable from a general perspective. We investigate this class and illustrate our formalism in a paradigmatic ladder model where the system’s parameters can be tuned to adjust the transport effect and topological phases.more » « less
-
The non-Hermitian models, which are symmetric under parity (P) and time-reversal (T) operators, are the cornerstone for the fabrication of new ultra-sensitive optoelectronic devices. However, providing the gain in such systems usually demands precise control of nonlinear processes, limiting their application. In this paper, to bypass this obstacle, we introduce a class of time-dependent non-Hermitian Hamiltonians (not necessarily Floquet) that can describe a two-level system with temporally modulated on-site potential and couplings. We show that implementing an appropriate non-Unitary gauge transformation converts the original system to an effective one with a balanced gain and loss. This will allow us to derive the evolution of states analytically. Our proposed class of Hamiltonians can be employed in different platforms such as electronic circuits, acoustics, and photonics to design structures with hiddenPT-symmetry potentially without imaginary onsite amplification and absorption mechanism to obtain an exceptional point.more » « less
-
Based on a general transport theory for nonreciprocal non-Hermitian systems and a topological model that encompasses a wide range of previously studied examples, we (i) provide conditions for effects such as reflectionless and transparent transport, lasing, and coherent perfect absorption, (ii) identify which effects are compatible and linked with each other, and (iii) determine by which levers they can be tuned independently. For instance, the directed amplification inherent in the non-Hermitian skin effect does not enter the spectral conditions for reflectionless transport, lasing, or coherent perfect absorption, but allows to adjust the transparency of the system. In addition, in the topological model the conditions for reflectionless transport depend on the topological phase, but those for coherent perfect absorption do not. This then allows us to establish a number of distinct transport signatures of non-Hermitian, nonreciprocal, and topological behavior, in particular (1) reflectionless transport in a direction that depends on the topological phase, (2) invisibility coinciding with the skin-effect phase transition of topological edge states, and (3) coherent perfect absorption in a system that is transparent when probed from one side.more » « less
An official website of the United States government
